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Abstract Metamodeling, i.e. building surrogate models to expensive black-
box functions, is an interesting way to reduce the computational burden for
optimization purpose. Kriging is a popular metamodel based on Gaussian Pro-
cess theory, whose statistical properties have been exploited to build efficient
global optimization algorithms. Single and multi-objective extensions have
been proposed to deal with constrained optimization when the constraints
are also evaluated numerically. This paper first compares these methods on a
representative analytical benchmark. A new multi-objective approach is then
proposed to also take into account the prediction accuracy of the constraints.
A numerical evaluation is provided on the same analytical benchmark and a
realistic aerospace case study.

Keywords Black-box functions · Constrained global optimization · Kriging ·
Multi-objective optimization

1 Introduction

In the aerospace industry, as well as in other fields, it is usual to design prod-
ucts using computer models. This facilitates the development of new concepts
and reduces the need for expensive prototypes. However, these computer mod-
els are usually very expensive-to-evaluate. For example, a single crash analysis
or a finite-element code may require more than twenty-four hours of compu-
tation. A classical strategy in this case is to replace the computer simulation
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by a metamodel to emulate the statistical input-output relationship at a very
reduced computational cost. These surrogate models are then very useful for
optimization purpose to replace the costly process and limit the number of
actual function calls.

The Kriging predictor [1,2], which is based on Gaussian Process theory, is
a possible choice in this context. It has become one of the most popular meth-
ods for approximating deterministic computer models, since it also provides
information on the uncertainty of the approximation. This has been exploited
to develop the “Efficient Global Optimization” (EGO) algorithm [3] for un-
constrained problems, which suggests iteratively new points where to evaluate
the costly black-box function so as to improve the evaluation of the global
optimum until convergence conditions are met or the simulation budget ex-
hausted. Different infill criteria have been described such as the Probability of
Improvement (PI) [4] or the Expected Improvement (EI) [3], the latter having
been successfully applied on many realistic problems [5].

Most real world design optimization problems involve constraint functions
that are also expensive-to-evaluate. They can then be approximated by Krig-
ing models and taken into account in the surrogate-based optimization al-
gorithms. A basic approach is to add a penalty to the objective function if
the constraints are violated but this strategy does not provide accurate re-
sults when the constraints are highly nonlinear. A probability-based approach
proposed in [2] uses the product of the EI criterion with the probability of
feasibility of the constraints. This method smooths the landscape produced by
a simple penalty function although it introduces a high conservativeness with
respect to constraint boundaries, which might fail to find the actual global
optimum. Improvements have been suggested by using sequential uncertainty
reduction [6] or approximating the constraint boundaries by Support Vector
Machines (SVM) [7].

A bi-objective approach has been described in [8] to treat objective im-
provement and constraint satisfaction as separate goals for improving the
choice of infill points, with promising results. Related methods [9,10] proposed
to aggregate the constraints using a filter, which boils down to a bi-objective
problem minimizing the objective while reducing as much as possible the ag-
gregated constraint violations. This work evolved into a progressive barrier
approach to handle constraints [11], which is now integrated in the NOMAD
software [12].

The present work compares single and multi-objective methods, which are
based on Expected Improvement and Probability of Feasibility criteria, on a
representative benchmark of test functions with complementary features in
terms of smoothness, active constraints and disjoint feasible regions. A new
multi-objective criterion with three objectives is also proposed to also take into
account the prediction accuracy of the constraints, so as to increase confidence
in the feasibility of the estimated global optimum.

A brief review of Kriging is presented in Section 2 and the principles of
Kriging-based optimization in Section 3. Existing methods for constrained
optimization are then reviewed and compared on an analytical benchmark in
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Section 4. The efficiency of bi-objective approaches is evaluated in Section 5
and compared to the new three-objective criterion on the analytical benchmark
in Section 6 and on a realistic aerospace case study in Section 7.

2 Kriging basics

The function to be approximated is defined as

Y :

∣∣∣∣
X ⊂ R

d 7→ Y ⊂ R

x → z = y(x)
. (1)

A surrogate model is built from a set of n input vectors X = {x1,x2, . . . ,xn}
and a vector of corresponding scalar evaluations z = {z1, z2, . . . , zn}. Once the
training of the surrogate model is achieved, the output ŷ of the process can be
predicted at new sampled points, with a highly reduced computational cost.

2.1 Gaussian process

Consider a probability space (Ω,F ,P), where Ω is the sample space equipped
with its σ-algebra F and a probability measure P. A stochastic (or random)
process is an application that maps the Cartesian product of the probability
space and an index space X in an output space Y:

Y (x, ω) :

∣∣∣∣
X× (Ω,F ,P) 7→ Y

(x, ω) → y(x, ω)
, (2)

where ω is an event of Ω. A path (or realization) of this process is defined by
y(x, ω) ≡ Y (x, ω). Y (x, ω0) is a function of x ∈ X for some given ω0 ∈ Ω,
while Y (x(0), ω) is a random variable for some given x(0) ∈ X. The event ω is
usually implied and will now be omitted for the sake of readability.

A random process is Gaussian if any finite number of its random variables
has a multivariate Gaussian distribution [13]. A Gaussian Process is thus a
second-order stochastic process defined by its mean function µ and its auto-
covariance function C(·):

µ(x) ≡ E [Y (x)] , ∀x ∈ X, (3)

C(x,x′) ≡ E [(Y (x)− µ(x)) (Y (x′)− µ(x′))] , ∀ (x,x′) ∈ X× X. (4)

A stochastic process is stationary if it is invariant by translation. As a conse-
quence, its mean function reduces to a constant,

µ(x) = µ0, ∀x ∈ X, (5)

and its autocovariance function becomes

C(x,x′) = σ2R(x− x′), ∀(x,x′) ∈ X× X, (6)

where σ2 is the constant process variance and R(·) is the autocorrelation func-
tion which only depends on the shift x− x′ in the input space.
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2.2 Kriging predictor

The best linear unbiased predictor (in the least-square sense) of the unobserved
quantity of interest Y0 ≡ Y (x(0)) is also known as the Kriging predictor [1,
2]. The black-box function z is modeled as a sample path from a Gaussian
process Y to be characterized for any x ∈ X:

Y (x) = β(x) + ε(x), (7)

where the mean function β(·) is an optional regression model that can be
estimated from available data (here, a constant mean model is chosen) and
the noise ε(·) is a zero-mean Gaussian process with stationary autocovariance.
The Kriging predictor has many interesting properties: it interpolates the ob-
servations in the dataset, it is asymptotically consistent if the autocovariance
function is regular and its predictor is a Gaussian variable [14]. For the dataset
{X , z}, the mean of the prediction ŷ is

ŷ(x) = β̂(x) +ψ(x,X )TR−1(X )
(
z− 1nβ̂(x)

)
, (8)

where {
R|ij (X ) = R(xi − xj), for i, j = 1, . . . , n

ψ(x,X ) = [R(x− x1), . . . , R(x− xn)]
T . (9)

Among many possible choices for the autocorrelation function R(·) [15], the
widely-used p-exponential function (10) has been chosen here. It involves two
types of shape parameters: the exponents 0 < pi ≤ 2 reflect the smoothness
of the interpolation (2 is the smoothest) while the correlation lengths θi are
scale factors which translate the spatial influence area of a sample point.

R(x− x′) = exp

(
−

d∑

i=1

θi|x[i]− x′[i]| pi

)
, (10)

where x[i] is the i−th component of x. Since the prediction is a Gaussian
variable, a mean squared error formula can be derived to estimate the variance
of the prediction error. It is written as

ŝ2(x) = σ̂2

(
1−ψ(x,X )

T
R−1(X )ψ(x,X ) +

(
1− 1T

nR
−1(X )ψ(x,X )

)2

1T
nR

−1(X )1n

)
.

(11)
This measure is one of the advantages of Gaussian process models. It has the
intuitive property that its value is null at any sampled point. If the variance is
high at some point, it means that there are not enough points in the training
dataset to build an accurate prediction at this location.

Maximum likelihood estimation (MLE) is generally used to learn the pa-
rameters Θ = {θi, pi|i = 1, . . . , n} of the autocorrelation function (10), the
mean regression function β(·) and the process variance σ2. It is well suited
to computer experiments because it does not depend on the dimension of the
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input space. The likelihood of the observations z is defined from the normal
distribution

L(β, σ2,Θ|z) = 1

(2πσ2)
n/2
√

det(R(Θ))
exp

[
− (z− β)

T
R−1(Θ)(z− β)

2σ2

]
.

(12)
The maximum-likelihood estimates are then obtained from the first-order op-
timality conditions of this unconstrained optimization problem,

β̂ =
1TR−1z

1TR−11
, σ̂2 =

(z− β̂)
T
R−1(z− β̂)

n
. (13)

By substituting these two solutions in (12), it leads to a new expression called
reduced likelihood function which is used to estimate correlation parameters:

Θ̂ ∈ argmin
θ,p

n

2
ln(σ̂2) +

1

2
ln[det(R(Θ))]. (14)

The shape of this function is usually multimodal with several local minima,
especially when both θ and p are searched for. In our experiments, this opti-
mization problem was solved using the Covariance Matrix Adaptation Evolu-
tion Strategy (CMA-ES) [16]. CMA-ES is a second-order evolutionary search
strategy based on the propagation of a covariance matrix, which has obtained
excellent results on multimodal and high-dimensional test problems [16].

3 Unconstrained optimization

This section considers the unconstrained global optimization problem

x̂ ∈ argmin
x∈X

z (x) . (15)

Several strategies have been studied to use the Kriging model for estimating x̂

with a limited budget of evaluations. The simplest strategy that minimizes it-
eratively the Kriging mean prediction is not efficient, since it does not take into
account the variance information and thus discards areas where uncertainty is
high [17]. Two main alternative infill criteria have been proposed and are now
widespread: PI (Probability of Improvement) and EI (Expected Improvement).
These criteria are used to suggest a point where the actual function should be
evaluated to improve the estimation of the global minimum.

The function value z is considered as the realization of a Gaussian variable
Y (x) with mean ŷ(x), and standard deviation ŝ(x). The improvement from
the current sampled minimum zmin = min{z1, . . . , zn} is defined as

I(x) =

{
zmin − ŷ(x), if ŷ(x) < zmin

0, otherwise
. (16)
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The PI for the optimum estimate can then be computed as the probability
that Y (x) ≤ zmin,

PI(x) = P[Y (x) ≤ zmin] =
1

ŝ(x)
√
2π

∫ ∞

0

exp

(
− (zmin − ŷ(x))

2

2ŝ2(x)

)
dx

PI(x) = Φ

(
zmin − ŷ(x)

ŝ(x)

)
,

(17)

where Φ(·) is the cumulative density function of the normal distribution [4].
Maximizing this criterion provides sample points that are mostly located near
the current best point, where the probability is already high. However, it does
not allow the exploration of areas where there are not many training points,
which makes it more suitable for local refinement.

Expected Improvement (EI) has been proposed in [3] to achieve a better
balance between exploration and exploitation of the surrogate model. Instead
of simply finding the probability that there will be some improvement, the
amount of improvement expected is calculated. The improvement (16) can be
rewritten as

I(x) =

{
ŝ(z′min(x)− u(x)), if u(x) < z′min(x) and ŝ > 0,

0, otherwise
, (18)

where u(x) = z−ŷ(x)
ŝ and z′min(x) = zmin−ŷ(x)

ŝ . Using the assumed normal
distribution for the Kriging predictor, the mathematical expectation of the
improvement is derived in (19) where φ(·) is the normal probability density
function.

EI(x) = ŝ
z′

min∫
−∞

(z′min(x)− u(x))φ(u(x))dx,

EI(x) = ŝ

[
z′minΦ(z

′
min) +

[
e−u2/2
√
2π

]z′

min

−∞

]
,

EI(x) = ŝ [z′minΦ(z
′
min) + φ(z′min)] ,

EI(x) = (zmin − ŷ)Φ
(

zmin−ŷ
ŝ

)
+ ŝφ

(
zmin−ŷ

ŝ

)
.

(19)

Inspection of the formula reveals two trends. The first part is nearly the same
as the PI criterion with an additional factor that scales the EI value on the
improvement value. This part is large when ŷ is smaller than zmin. The second
part tends to be large when the uncertainty on the prediction is high. The
fact that EI is large for areas of improvement and regions of high uncertainty
shows its interesting global refinement properties.

An algorithm called Efficient Global Optimization(EGO) was also defined
in [3] to address (15). It proceeds as follows:

1. Compute an initial space-filling design X = {x1,x2, . . . ,xn} and evaluate
z = {z1, z2, . . . , zn}. Learn the Kriging parameters.



Multi-objective Kriging-based methods for constrained global optimization 7

2. Find the argument xnew of the maximum of the infill criterion, either
PI (17) or EI (19), and compute the corresponding function value znew.

3. Append xnew to X and znew to z. Learn the Kriging parameters again.
4. Repeat the procedure from 2 until stopping criterion is met (either on the

number of function evaluations or if the value of the infill criterion remains
below some threshold at successive iterations).

As already suggested, and further confirmed by many publications, the EI
criterion is better suited for global optimization with EGO [2,18,19] and will
be the basis of the work presented here. Figure 1 illustrates the behavior of
the two criteria on a simple example and highlights the fact that EI takes
the uncertainty on the prediction more into account than PI, which leads its
maximum to be closer to the minimum of the real function. The shape of the
EI criterion is multimodal with several local extrema, thus its optimization
at Step 2 of EGO should be performed by an appropriate global search al-
gorithm. For example, the optimum might be found using CMA-ES [16] or
DIRECT [20]. Note that, at this step, there is no constraint on the number
of evaluations of EI since the Kriging predictor is very cheap to compute. It
has been shown in [21] that EGO generates a dense sequence of samples which
converges to the global optimum, under the assumption of a known and fixed
autocorrelation function.

Fig. 1: Simple example of PI (left) and EI (right) criteria

4 Single-objective constrained optimization

Constrained global optimization of the black-box function z is now considered.

x̂ ∈ arg min
x∈X

z (x) ,

s.t. g (x) ≤ 0.
(20)
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The constraint vector g(·) is also assumed to be known only via costly evalu-
ations of the same simulation, and each constraint will thus be approximated
by a Kriging surrogate model. The sub-optimization problem of the infill cri-
teria (Step 2 of EGO) is usually where the constraints are taken into account.
There are two main strategies to incorporate constraint information: the first
one is to evaluate the probability of constraint feasibility [8], the second one is
to directly use the Kriging mean value of the constraints in the optimization
of the infill criterion [19].

4.1 Probability of feasibility (EI×PF)

This measure is analogous to PI, with ĝi(·) the Kriging predicted mean of the
i-th constraint and ŝgi(·) its variance,

PFi(x) = Φ

(
− ĝi(x)

ŝgi(x)

)
. (21)

This method transforms the constrained optimization problem of EI at Step 2
of EGO into an unconstrained one by multiplying the value of EI by the
probability that the point is feasible [2]. The infill criteria is then

EI× PF(x) = EI(x)

m∏

i=1

PFi(x), (22)

with m the number of constraints. The magnitude of EI will be driven to zero
where there is a very low probability of feasibility for any of the constraints.
One concern often noticed is that it impacts the value of EI too strongly and
keeps the algorithm from exploring points close to the constraint boundaries.

4.2 Constrained EI (CEI)

This method for handling constraints, originally proposed in [22], is simply to
solve the EI optimization as a constrained optimization problem. It is highly
dependent on the accuracy of the constraint surrogate models because the
Kriging mean value is directly used as constraints. If constraints are active, it
will add points close to the value ĝ(x) = 0:

max
x∈X

EI(x),

s.t. ĝ(x) ≤ 0.
(23)

An auxiliary global optimization algorithm with constraint handling is needed
here, possible choices being DIRECT [20], MADS [23] or CMA-ES with ad-
ditional penalization [24]. Note that when disconnected feasible regions occur
and no feasible point has been found, [22] suggested to use the probability of
feasibility in order to get a starting point for this criterion.
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4.3 Expected violation (EV)

An alternative approach uses the Expected Violation (EV) as a constraint
instead of the Kriged constraint mean values [25],

EVi(x) = −ĝi(x)Φ

(
− ĝi(x)

ŝgi(x)

)
+ ŝgiφ

(
− ĝi(x)

ŝgi(x)

)
. (24)

EV is analogous to the EI criterion, using the Kriging model of the constraints.
It is high in regions where the constraints are likely to be non-violated or
where there is a high uncertainty on the constraint models. If EV is higher
than a given threshold tEV, the point can be considered as feasible. The new
EI optimization problem is defined as

max
x∈X

EI(x),

s.t. EVi(x) ≥ tEV for i = 1, . . . ,m.
(25)

4.4 Analytical benchmark

A benchmark of four analytical optimization test problems with various char-
acteristics has been defined to evaluate the methods. The first optimization
problem is the Branin function with a smooth constraint. This function is usu-
ally evaluated on the square x1 ∈ [−5 , 10] , x2 ∈ [0 , 15] (rescaled in [0, 1]2

for display). In Figure 2, the constraint limits are in red, the non-feasible zone
is white and the black point is the true global optimum.

fBranin(x1, x2) =

(
x2 −

5.1x2
1

4π2
+

5x1

π
− 6

)2

+ 10

(
1− 1

8π

)
cos (x1) +

1

8π
.

(26)
Problem 1:

min
x∈X

fBranin(x1, x2),

s.t. gBranin(x1, x2) = 0.2− x1x2 ≤ 0.
(27)

The second optimization problem is the six-hump Camel function with a mul-
timodal constraint defined on the square [−2, 2]2. This problem has also a local
minimum with a function value close to the global minimum (see Figure 2b).
Problem 2:

min
x∈X

fCamel(x1, x2) =
(
4− 2.1x2

1 +
x4

1

3

)
x2
1 + x1x2 +

(
−4 + 4x2

2

)
,

s.t. gCamel(x1, x2) = 1.5−
(
1.5x2 − cos(31x2)

6

)2
− x1 ≤ 0.

(28)

The third optimization problem is a function used in [19] with three constraints
(two active and one inactive, see Figure 2c). It is defined on the square [0, 1]2.
This test problem challenges methods on their ability to handle multiple con-
straints with some of them inactive.
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(a) Problem 1 (b) Problem 2

(c) Problem 3 (d) Problem 4

Fig. 2: Benchmark of analytical functions

Problem 3:

min
x∈X

fSasena(x1, x2) = −(x1 − 1)
2 − (x2 − 0.5)

2
,

s.t. g1(x1, x2) = (x1 − 3)
2
+ (x2 + 2)

2
e−x7

2 − 12 ≤ 0,
g2(x1, x2) = 10x1 + x2 − 7 ≤ 0,

g3(x1, x2) = (x1 − 0.5)
2
+ (x2 + 0.5)

2 − 0.2 ≤ 0.

(29)

The fourth optimization problem is the Branin function with a Gomez func-
tion as constraint and an additional sine function to increase modality of the
constraint. It is defined on the square [0, 1]2 where the constraint has disjoint
domains. In Figure 2d, the full Branin function is displayed for readability
sake but areas allowed by the constraint are only inside circles.

gGomez(x1, x2) = 6−
(
4− 2.1x2

1 +
1
3x

4
1

)
x2
1 − x1x2

+
(
4− 4x2

2

)
x2
2 − 3 sin [6 (1− x1)]− 3 sin [6 (1− x2)] .

(30)

Problem 4:
min
x∈X

fSasena(x1, x2),

s.t. gGomez(x1, x2) ≤ 0.
(31)
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A first illustration of the behavior of the three single-objective criteria is avail-
able in Figure 3 for Problem 1 at final iteration, their maximal value being
located in the blue area. For the EI×PF criterion, the constraint is well de-
limited by the Probability of feasibility but the contour level shows that the
maximum of the EI does not lie on the boundary, unlike the actual function
minimum. For CEI, if constraints are badly modeled the criterion may add
points toward a local minimum. There is nothing to drive the criterion to add
points in high uncertainty areas of the constraint Kriging prediction. For EV
(with tEV = 10−3), the boundary is nearly the same as for CEI. It is slightly
more conservative because the Kriging prediction variance is also taken into
account. The optimum of the EI criterion is very close to the actual constraint.

(a) EIxPF (b) Constrained EI (c) EV

Fig. 3: Behavior of the single-objective criteria on Problem 1

Numerical results on the four test problems, averaged on ten initial random
space-filling designs, are presented in Table 1 and Figure 4. For each problem,
the number of function calls needed and the distance to the real optimum are
evaluated. To compare the accuracy of the approximation of the constraints for
each method, the root mean squared error around the region of the minimum
is calculated between actual constraint functions and the mean value of their
Kriging approximations. Another root mean squared error is also calculated
in the same area but only on constraints boundaries (gi = 0). These two
evaluation criteria indicate whether the method under study has provided an
accurate evaluation of the constraint around the optimum and therefore if the
estimated optimum can be trusted.

The EV method has the worst results on the four problems. Taking into ac-
count the prediction variance to reduce the allowed regions leads this method
to be too conservative. It found local minima several times for the three last
problems. CEI provides good results with less function calls than the Probabil-
ity of feasibility method. But this method failed to find the global minimum
for Problems 3 and 4, due to disjoint regions. When it does not fail, both
RMSE on constraint Kriging approximations are lower than those obtained
with the EIxPF method. This might be explained by the fact that points
added with CEI are closer to the constraint actual boundaries than points
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added using EIxPF. The only method that does not fail on the four problems
is EIxPF. It also obtains fair results in terms of constraint prediction accuracy,
although less accurate than CEI. These benchmark results are consistent with
and complementary to those presented in [8,19].

Table 1: Results of single-objective methods on the four benchmark problems,
averaged on 10 different space-filling designs (mean ± standard deviation)

Benchmark Method Distance to minimizer Function calls RMSE ĝ area RMSE ĝ = 0

Problem 1

EIxPF 0.002± 0.001 31.8± 1.6 0.042± 0.011 0.0015± 0.001

CEI 0.018± 0.014 28.7± 4.7 0.036± 0.011 0.0014± 0.001

EV 0.002± 0.000 33.8± 3.3 0.038± 0.009 0.0016± 0.001

Problem 2

EIxPF 0.001± 0.000 53.1± 9.5 8.236± 3.882 0.3444± 0.443

CEI 0.187± 0.195 49.6± 6.6 12.240± 6.554 0.2959± 0.309

EV 0.155± 0.189 37.9± 3.3 13.442± 8.702 0.8872± 1.026

Problem 3

EIxPF 0.082± 0.222 25.3± 0.9 1.368± 0.540 0.0567± 0.040

CEI 0.003± 0.001 24.6± 1.5 1.130± 0.403 0.0458± 0.033

EV 0.360± 0.374 25± 0.9 1.369± 0.829 0.0484± 0.021

Problem 4

EIxPF 0.005± 0.006 33.7± 4.1 6.339± 1.840 0.2295± 0.149

CEI 0.081± 0.124 30.8± 2.4 6.858± 2.182 0.6401± 0.028

EV 0.074± 0.203 30.3± 2.7 7.706± 2.478 0.5404± 0.013

5 Bi-objective EI for constrained optimization

It has been seen in the previous section that single-objective methods have
difficulties to achieve a good trade-off between an accurate evaluation of the
optimum, the feasibility of the solution and an accurate approximation of the
constraints. Therefore, multi-objective criteria are now examined, starting in
this section with the bi-objective criterion proposed in [8] and then introducing
the new three-objective criterion developed in this work in the next section.

Rather than transforming the constrained problem into an unconstrained
one, an alternative is to treat EI and PF as individual goals to optimize,

max
x∈X

{
EI(x),

m∏

i=1

PFi(x)

}
. (32)

The trade-off between obtaining the minimum of the objective function and
fulfilling the constraints is then explicitly considered within a bi-objective for-
mulation, forming a set of potential update points as a Pareto set [8]. An
example of the two goals presented as a Pareto front for Problem 1 is available
in Figure 5. The bottom-left area of the plot is where the interesting values for
both objectives lie. This clearly shows that any increase in EI is detrimental
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(a) Problem 1 (b) Problem 2

(c) Problem 3 (d) Problem 4

Fig. 4: Summary of numerical results (normalized) for single-objective methods
(mean ± standard deviations)

to PF and conversely.
Constructing this Pareto set gives the user a large choice of possible infill
points. In the EGO algorithm, only one point that fulfills an acceptable trade-
off between both objectives should be selected. Following [26], this point is
chosen by maximizing the product of EI and PF. It is important to highlight
that a point determined using the single objective approach EIxPF may not
correspond to the point found using the Pareto front. The single objective
function is severely multimodal, so treating the problem as multi-objective
may obtain better solutions [27]. The multi-objective problem might be solved
using NSGA-II [28], which builds the Pareto front with a genetic strategy
(other multi-objective solvers based on the MADS algorithm could also be
considered [29]). In our experiments, a population size of 250 with 150 gener-
ations was used. NSGA-II finds a set of solutions clustered in different areas
of the design space, then the point with the largest product of EI and PF is
selected as the global solution.
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Fig. 5: Example of Pareto front on Problem 1 (left) and location of these points
in the input space (right, black line)

In [26], a variant of (32) has also been derived to restrict the area allowed
by PF, for problems where inactive constraints can be ignored during opti-
mization. Note that this restricts its applicability because active constraints
are not known before the optimization process. The standard formulation of
Probability of feasibility identifies regions where the predicted values of con-
straints will be lower than constraint limits. If all inactive constraints are
ignored, the remaining constraints might be treated as equality constraints
and the accuracy of the model away from constraint boundaries is considered
as less important. To encourage exploitation of regions close to the constraints
and on the feasible side, the PDF is integrated over the interval [0, ε], as

Pfε(x) = Φ

(
− ĝ(x)

ŝg(x)

)
− Φ

(
−ε+ ĝ(x)

ŝg(x)

)
. (33)

The value assigned to ε influences the size of the allowed area. Some examples
of regions where PFε is non-zero are drawn on Figure 6 for Problem 1. At high
values of ε, the enhanced probability of feasibility is close to the PF function.
The authors chose an ε equal to 5% of the known output range of the Kriging
approximation of the constraints (difference between ĝimin and ĝimax).
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(a) ε = 100 (b) ε = 1 (c) ε = 0.1

Fig. 6: Bi-objective EI vs PFε with various thresholds

The single-objective results from the EIxPF method are compared to the
bi-objective methods EIvsPF and EIvsPFε described above, on the same an-
alytical benchmark. Numerical results averaged on ten initial designs are re-
ported in Table 2 and Figure 7. The limitations of the EIvsPFε criterion
are highlighted on Problem 3: it is not suitable for optimization with inac-
tive constraints. Since constraints are not considered to be known before the
optimization, the practical applicability of this method is questionable. The
EIvsPF criterion provides more accurate results on all problems, although
EIxPF converges a little faster on Problems 1 and 4.

Table 2: Results of bi-objective methods on four benchmark problems, aver-
aged on 10 different space-filling design (mean ± standard deviation)

Benchmark Method Distance to minimizer Function calls RMSE g area RMSE g=0

Problem 1

EIvsPF 0.001± 0.000 38.4± 3.1 0.0471± 0.015 0.0016± 0.001

EIvsPFε 0.001± 0.001 37.1± 4.5 0.0465± 0.014 0.0015± 0.001

EIxPF 0.002± 0.001 31.8± 1.6 0.042± 0.011 0.0015± 0.001

Problem 2

EIvsPF 0.0006± 0.000 50.8± 5.1 13.142± 6.806 0.5711± 0.679

EIvsPFε 0.0007± 0.000 56.6± 8.9 12.934± 4.622 0.5341± 0.510

EIxPF 0.001± 0.000 53.1± 9.5 8.236± 3.882 0.3444± 0.443

Problem 3

EIvsPF 0.002± 0.002 25.2± 2.3 1.172± 0.420 0.0437± 0.037

EIvsPFε convergence not reached

EIxPF 0.082± 0.222 25.3± 0.9 1.368± 0.540 0.0567± 0.040

Problem 4

EIvsPF 0.002± 0.002 40.4± 3.1 5.130± 1.400 0.1052± 0.114

EIvsPFε 0.003± 0.001 34.8± 2.1 6.176± 2.409 0.1707± 0.257

EIxPF 0.005± 0.006 33.7± 4.1 6.339± 1.840 0.2295± 0.149
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(a) Problem 1 (b) Problem 2

(c) Problem 3 (d) Problem 4

Fig. 7: Summary of numerical results (normalized) for bi-objective methods
(mean ± standard deviations)

6 New three-objective criterion: EI, PF and Prediction variance of

constraints

The prediction variance of the Kriging approximation of the constraints is not
explicitly taken into account in the single and bi-objective approaches. If the
variance is high in some areas and the global minimum lies there, it might pre-
vent the optimization process to find this optimum with enough confidence.
Reducing the prediction variance leads also to a global minimum that is closer
to the actual constraint boundaries in the case of active constraints. A third
objective translating the need to minimize the prediction variance of the Krig-
ing approximation of the constraints is thus advocated in addition to the two
previous objectives. The prediction variance of constraints ŝgi might be di-
rectly used as the third objective. An alternative solution is to use the second
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part of the EV criterion which governs exploration, ŝgiφ
(
− ĝi(x)

ŝgi

)
,

max
x∈X

{
EI(x),

m∏

i=1

PFi(x),−
m∑

i=1

ŝg i

}
, (34)

or

max
x∈X

{
EI(x),

m∏

i=1

PFi(x),−
m∑

i=1

ŝgiφ

(
− ĝi(x)

ŝgi

)}
. (35)

The point selected from the three-objective Pareto set is still the one that
maximizes the product of EI and PF. An example of new Pareto fronts is dis-
played in Figure 8. The influence of the third objective removes some points
from the corresponding bi-objective front. The Pareto set seems to have dom-
inated points only because the front is projected on the plane of EI and PF.
In the input space, points from the Pareto set are more spread where the ac-
curacy of the constraint Kriging prediction is high. This may help to reduce
uncertainty on constraint boundaries.

The two new criteria are compared (see results averaged on ten initial de-
signs in Table 3 and Figure 9) with the bi-objective method EIvsPF which gave
the better results so far. The three-objective criterion (34) provided equivalent
optimum estimation as the bi-objective methods but with a much better accu-
racy for the constraint prediction, except for Problem 1 where the constraint
is very smooth and thus easily approximated by all the methods even without
explicitly taking into account this objective. The second three-objective crite-
rion (35) obtained the best constraint accuracy on the entire space, however it
is less accurate for estimating the optimum value because it gives too much im-
portance to constraint exploration. Nevertheless, these estimates remain more
accurate than those obtained with the single-objective methods.

7 Solid propulsion design test problem

A four-dimensional aerospace case study is considered as a validation prob-
lem for the multi-objective methods (Figure 10). Its goal is to maximize the
propulsive speed increment provided by a rocket motor under minimum thrust-
to-weight ratio and geometrical and physical feasibility constraints.

The design is based on a simplified analysis of a cylindrical solid propellant
rocket motor which involves the three following disciplines:

– Propulsion: for a given set of propellant characteristics (density, combus-
tion speed, flame temperature, gas composition), and taking nozzle shape
and combustion pressure as inputs, thrust, mass flow rate and subsequently
specific impulse, combustion time are computed under the assumption of
constant thrust.

– Structure, mass and sizing: the tank walls should comply with the design
pressure, and for a given mass of propellant the other dry masses are com-
puted, together with geometrical feasibility constraints (combustion area,
packaging ratio, size of central channel).
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Fig. 8: Projections of Pareto front for three-objective method on Problem 1

Table 3: Results of three-objective methods on four benchmark problems, av-
eraged on 10 different space-filling design (mean ± standard deviation)

Benchmark Method Distance to minimizer Function calls RMSE g area RMSE g=0

Problem 1

EI, PF, ŝg 0.001± 0.000 36.9± 3.1 0.0447± 0.014 0.0014± 0.001

EI, PF, ŝgφ 0.003± 0.002 34.4± 2.2 0.0447± 0.013 0.0021± 0.001

EIvsPF 0.001± 0.000 38.4± 3.1 0.0471± 0.015 0.0016± 0.001

Problem 2

EI, PF, ŝg 0.0006± 0.000 47.9± 6.6 13.203± 6.709 0.4063± 0.581

EI, PF, ŝgφ 0.0013± 0.000 51.9± 4.5 9.422± 5.544 0.2700± 0.258

EIvsPF 0.0006± 0.000 50.8± 5.1 13.142± 6.806 0.5711± 0.679

Problem 3

EI, PF, ŝg 0.003± 0.002 27.1± 3.2 1.023± 0.416 0.0281± 0.014

EI, PF, ŝgφ 0.005± 0.002 26.7± 1.7 0.909± 0.415 0.0281± 0.017

EIvsPF 0.002± 0.002 25.2± 2.3 1.172± 0.420 0.0437± 0.037

Problem 4

EI, PF, ŝg 0.002± 0.001 41.2± 4.9 5.082± 2.244 0.0506± 0.027

EI, PF, ŝgφ 0.004± 0.002 36.1± 4.0 5.894± 2.648 0.0820± 0.070

EIvsPF 0.002± 0.001 40.4± 3.1 5.130± 1.400 0.1052± 0.114
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(a) Problem 1 (b) Problem 2

(c) Problem 3 (d) Problem 4

Fig. 9: Summary of numerical results (normalized) for three-objective methods
(mean ± standard deviations)

– Performance estimation: the performance estimation discipline computes
the propulsive speed increment of the rocket motor, from the outputs given
by the propulsion and mass budget disciplines.

The structure of the design process is illustrated in Figure 11. In this
test case, only simplified models are used in the different disciplines. The
computation time required to compute the objective function and constraints
with respect to the design variables is less than one second. Considering fixed
overall dimensions (length L = 11 m and diameter D = 1.07 m, similar to
Ariane 4 additional solid-propellant motor for validation purposes), the design
problem is to maximize

∆V = g.ISP. ln

(
mi

mf

)
, (36)

where g = 9.81m.s−2 (gravity acceleration), ISP = Thrust
ṁ.g (specific impulse in

s), mi is the mass at lift-off and mf the mass at propellant burn-out, ṁ the
mass flow rate. The three constraints of this optimization problem are:
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Fig. 10: Solid propulsion rocket motor

Fig. 11: Disciplines involved in the design problem

– g1: ensure packaging ratio (Propellant volume/Available volume) ≤87%,
– g2: ensure that central diameter is 30% greater than nozzle throat diameter,
– g3: ensure that combustion area is greater than the minimum feasible area

of central channel walls.

The four design variables are:

– x1: nozzle throat diameter (m),
– x2: nozzle exit diameter (m),
– x3: combustion pressure (bar),
– x4: propellant mass (kg).

The domain definition and the baseline of the different design variables are
given in Table 4.

The three-objective criteria presented in the previous section and the bi-
objective criterion EIvsPF have been evaluated on this test problem for five
random initial designs (see Table 5). A reference optimum value was previ-
ously determined via expensive runs of CMA-ES. The three multi-objective
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Variable Domain definition Baseline

x1 [0.05,1] (m) 0.75m

x2 [0.5,1.4] (m) 1m

x3 [1,500] (bar) 100bar

x4 [2000,15000] (kg) 8000kg

Table 4: Design variable description

methods obtain similar results on this test problem, and an acceptable solu-
tion is always found. The three-objective criterion {EI,PF, ŝg} provides less
scattered results than the bi-objective method for a comparable number of
runs, while the {EI,PF, ŝgφ} criterion is a little less accurate but also requires
less evaluations. A convergence illustration of the three methods for one ini-
tialization is provided in Figure 12. In our test problems, the bi-objective and
three-objective optimization required approximately 15s per iteration (stan-
dard 3.0GHz Windows PC with MATLAB).

Table 5: Numerical results on solid propulsion design problem, averaged on
five initial designs (mean ± standard deviation)

Method Distance to reference Function calls Maximum value

EI, PF, ŝg 1.208 ± 0.053 117.8 ± 29.2 5011.4 ± 36.8

EI, PF, ŝgφ 1.220 ± 0.060 107.4 ± 22.2 4998.8 ± 32.8

EIvsPF 1.260 ± 0.066 115.6 ± 20.1 5012.4 ± 59.6
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8 Conclusion

The main methods for Kriging-based constrained global optimization of black-
box functions have been recalled and evaluated numerically in this paper, on
an analytical benchmark with various features (smoothness, active constraints,
disjoint feasible areas) and an aerospace design problem. These algorithms are
all evolutions of the well-known EGO procedure, which is based on the Ex-
pected Improvement criterion, and on the probability of feasibility computed
from the Kriging approximation of the constraints.

It has been highlighted that multi-objective methods are more appropriate
than single-objective ones to achieve a good trade-off between the accuracy of
the optimum evaluation and constraint feasibility. In particular, a new three-
objective criterion has been proposed to also take into account the accuracy of
the constraint prediction, so that the estimated optimum could be confidently
identified as feasible.

The multi-objective criteria offer significant improvements for constraint
handling in Kriging-based black-box optimization, although more function
calls might be needed than with single objective methods on smooth and low-
dimensional problems. Further experiments need to be conducted on higher-
dimensional problems to confirm the benefits of the bi- and three-objective
approaches.
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